МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ПРИНЯТО

решением Учёного совета ФГБОУ ВО «ДонНТУ»

протокол № <u>3</u> от «<u>26</u> » <u>04</u> 2024 г.

УТВЕРЖДАЮ

Ректор

А. Я. Аноприенко

(102 »/ 05 202

ПРОГРАММА ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ

Б3.01(Д) Выполнение, подготовка к процедуре защиты и защита выпускной квалификационной работы

Направление подготовки:

15.04.06 Мехатроника и робототехника

Специализация /

Системы управления робототехническими

направленность (профиль):

комплексами

Уровень высшего образования:

Магистратура

Квалификация:

Магистр

Составитель(и):

зав. каф., к.т.н.

РАССМОТРЕНО И ПРИНЯТО кафедра «Электропривод и автоматизация промышленных установок»

Протокол от /9 . ○3 .2024 года № 9

Зав. кафедрой 🔑 Розкаряка П.И

Розкаряка П.И.

ОДОБРЕНО учебно-методической комиссией ДонНТУ по направлению подготовки 15.04.06 Мехатроника и робототехника

Протокол от <u>15. 04.</u>2024 года № 4

Іредседатель Кул Гусев В. В.

Программа государственной итоговой аттестации: Выполнение, подготовка к процедуре защиты и защита выпускной квалификационной работы разработана в соответствии с требованиями образовательного стандарта: Федеральный государственный образовательный стандарт высшего образования - магистратура по направлению подготовки 15.04.06 Мехатроника и робототехника (приказ Минобрнауки России от 14.08.2020 г. № 1023); на основании учебного плана основной профессиональной образовательной программы высшего образования ФГБОУ ВО «ДонНТУ» по направлению подготовки 15.04.06 Мехатроника и робототехника, направленность (профиль) / специализация «Системы управления робототехническими комплексами» для 2024 года приёма.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Выполнение, подготовка к процедуре защиты и защита выпускной квалификационной работы является составной частью государственной итоговой аттестации и проводится с целью установления соответствия результатов освоения обучающимся основной профессиональной образовательной программы высшего образования требованиям образовательного стандарта: Федеральный государственный образовательный стандарт высшего образования - магистратура по направлению подготовки 15.04.06 Мехатроника и робототехника (приказ Минобрнауки России от 14.08.2020 г. № 1023).

К выполнению и защите выпускной квалификационной работы допускаются обучающиеся, успешно завершившие теоретическое обучение и практическую подготовку в соответствии с основной профессиональной образовательной программой высшего образования ФГБОУ ВО «ДонНТУ» по направлению подготовки 15.04.06 Мехатроника и робототехника, направленность (профиль) / специализация «Системы управления робототехническими комплексами».

Трудоемкость выполнения и защиты выпускной квалификационной работы составляет 9 з.е.

При условии успешной защиты выпускной квалификационной работы обучающемуся присваивается соответствующая квалификация и выдается диплом государственного образца о высшем образовании. Обучающийся, не выполнивший выпускную квалификационную работу в положенный срок, либо не подтвердивший в процессе защиты выпускной квалификационной работы соответствие уровня подготовки требованиям федерального государственного образовательного стандарта высшего образования соответствующего направления подготовки, подлежит отчислению из ФГБОУ ВО «ДонНТУ».

2. ПЕРЕЧЕНЬ ОЦЕНИВАЕМЫХ В ХОДЕ ЗАЩИТЫ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ КОМПЕТЕНЦИЙ В СООТВЕТСТВИИ С ЗАПЛАНИРОВАННЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

- ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности;
 - ОПК-1.1 Применяет знания естественнонаучных и общеинженерных дисциплин, методов математического анализа и моделирования, составляющих основу научных исследований
- ОПК-10 Способен разрабатывать методики контроля и обеспечения производственной и экологической безопасность на рабочих местах;
 - ОПК-10.1 Разрабатывает мероприятия, обеспечивающие безопасность жизнедеятельности персонала на рабочих местах, контроль за соблюдением правил техники безопасности, используя системы искусственного интеллекта
- ОПК-11 Способен организовывать разработку и применение алгоритмов и современных цифровых программных методов расчетов и проектирования отдельных устройств и подсистем мехатронных и робототехнических систем с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники в соответствии с техническим заданием, разрабатывать цифровые алгоритмы и программы управления робототехнических систем;
 - ОПК-11.1 Организовывает разработку математического обеспечения процедур анализа и синтеза систем мехатронных и робототехнических устройств
- ОПК-12 Способен организовывать монтаж, наладку, настройку и сдачу в эксплуатацию опытных образцов мехатронных и робототехнических систем, их подсистем и отдельных модулей;
 - ОПК-12.1 Разрабатывает программу испытаний мехатронного или робототехнического устройства, проводит отладку управляющих программ мехатронных и робототехнических устройств
- ОПК-13 Способен использовать основные положения, законы и методы естественных наук и математики при формировании моделей и методов исследования мехатронных и робототехнических систем;
 - ОПК-13.1 Использует методы построения математических моделей динамических систем, исследования поведения систем автоматического управления мехатронных и робототехнических систем
- ОПК-14 Способен организовывать и осуществлять профессиональную подготовку по образовательным программам в области машиностроения.
 - ОПК-14.1 Владеет современными педагогическими технологиями; формами и методами педагогической деятельности
- ОПК-2 Способен применять основные методы, способы и средства получения, хранения, переработки информации в области машиностроения;

- ОПК-2.1 Применяет современные информационные технологии для поиска, хранения, обработки, анализа и представления информации
- ОПК-3 Способен осуществлять профессиональную деятельность с учетом экономических, экологических, социальных и других ограничений на всех этапах жизненного уровня;
 - ОПК-3.1 Выбирает наиболее эффективный способ решения задач, учитывая действующие нормы и имеющиеся условия, ресурсы и ограничения
- ОПК-4 Способен использовать современные информационные технологии и программные средства при моделировании технологических процессов;
 - ОПК-4.1 Демонстрирует владение современными информационными технологиями и программные средства при решении задач профессиональной деятельности
- ОПК-5 Способен разрабатывать нормативно-техническую документацию, связанную с профессиональной деятельностью с учетом стандартов, норм и правил;
 - ОПК-5.1 Умеет проводить научно-исследовательские и патентные исследования; владеет навыками составления отчетов о научно-технических и патентных исследованиях, составления заявочных материалов на новые объекты интеллектуальной промышленной собственности
- ОПК-6 Способен решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий;
 - ОПК-6.1 Анализирует научно-техническую информацию, отечественный и зарубежный опыт в области разработки и исследования мехатронных и робототехнических систем
- ОПК-7 Способен разрабатывать современные экологичные и безопасные методы рационального использования сырьевых и энергетических ресурсов в машиностроении;
 - ОПК-7.1 Производит выбор оборудования и его режима функционирования для обеспечения оптимального потребления сырьевых и энергетических ресурсов
- ОПК-8 Способен оптимизировать затраты на обеспечение деятельности производственных подразделений;
 - ОПК-8.1 Оценивает эффективность использования фондов на предприятии, использует принципы и методы планирования, мероприятий по оптимизации затрат
- ОПК-9 Способен разрабатывать и осваивать новое технологическое оборудование;
 - ОПК-9.1 Осваивает работу с новыми типами образцов мехатронных и робототехнических устройств
- ПК-1 Способен применять методы создания и анализа моделей, позволяющих прогнозировать свойства и поведение отдельных устройств и подсистем мехатронных и робототехнических систем
 - ПК-1.1 Способен применять соответствующий физико-математический аппарат, методы анализа для компьютерного моделирования объектов профессиональной деятельности
- ПК-2 Способен выбирать серийные и проектировать новые объекты автоматизации и робототизации
 - ПК-2.1 Демонстрирует знание методик проектирования новых объектов профессиональной деятельности
- ПК-3 Способен эксплуатировать и проводить ремонт мехатронных и робототехнических систем и их элементов
 - ПК-3.1 Владеет навыками обслуживания и наладки типовых цифровых систем управления, применяющихся в мехатронных и робототехнических системах
- УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий
 - УК-1.1 Анализирует проблемную ситуацию как систему, выявляя ее составляющие и связи между ними, осуществляет поиск вариантов решений и путей дальнейшего исследования
- УК-2 Способен управлять проектом на всех этапах его жизненного цикла
 - УК-2.1 Выполняет оценку экономической эффективности проекта с учетом организационных методов, принципов и инструментов, используемых в проектной работе при управлении проектами на всех этапах его жизненного цикла, в первую очередь при экономическом обосновании инновационных решений
- УК-3 Способен организовывать и руководить работой команды, вырабатывая командную стратегию для достижения поставленной цели
 - УК-3.1 Владеет навыками организации и руководства работой команды по экономическому обоснованию этапов инновационного проекта при выработке командной стратегии достижения цели функционирования предприятия
- УК-4 Способен применять современные коммуникативные технологии, в том числе на иностранном(ых) языке(ах), для академического и профессионального взаимодействия
 - УК-4.1 Осуществляет коммуникацию в устной и письменной формах на иностранном языке, в том числе в рамках академического и профессионального взаимодействия
- УК-5 Способен анализировать и учитывать разнообразие культур в процессе межкультурного взаимодействия
 - УК-5.1 Успешно взаимодействует с представителями различных культур
- УК-6 Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки

УК-6.1 Определяет и реализует приоритеты собственной деятельности и способы ее совершенствования на основании оценки и целесообразного использования собственных ресурсов

3. ПОРЯДОК ПОДГОТОВКИ И ЗАЩИТЫ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ				
Код	Наименования видов работ	Часов	Литература	
	Раздел 1. Подготовительный этап			
1.1	Проработка полученного задания. Анализ литературных источников. Подготовка общей части.	50	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Л2.6 Л2.7Л3.1	
1.2	Консультации руководителя ВКР. Детализация и конкретизация задания на ВКР. Планирование структуры ВКР.	20	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Л2.6 Л2.7Л3.1	
	Раздел 2. Основной этап			
2.1	Работа над разделами ВКР	184	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Л2.6 Л2.7Л3.1	
2.2	Консультации руководителя ВКР и консультантов по разделам ВКР.	20	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Л2.6 Л2.7Л3.1	
	Раздел 3. Заключительный этап			
3.1	Оформление пояснительной записки и графической части ВКР	50	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Л2.6 Л2.7Л3.1	

4. ТЕМАТИКА, СОДЕРЖАНИЕ, ПОДГОТОВКА И ЗАЩИТА ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ

4.1. Основные направления и тематики выпускных квалификационных работ

Выпускная квалификационная работа (ВКР) представляет собой самостоятельное и логически завершённое научное или прикладное исследование, связанное с решением задач видов профессиональной деятельности. В зависимости от

поставленной цели магистерская диссертация может быть направлена на решение одной из следующих задач:

- выполнение теоретических и (или) экспериментальных исследований с целью получения научных результатов, направленных на расширение существующих научных теорий и методов исследования поисковое научное исследование;
- решение актуальной практической задачи, отвечающей современным интересам и потребностям области практической деятельности в отрасли по направлению подготовки – практико-ориентированное научное исследование.

При выборе темы ВКР следует учитывать:

- актуальность и перспективность выбранного направления исследования, базирующегося на научной школе выпускающей кафедры и соответствующего современному уровню развития науки, техники и технологий с учётом направления подготовки;
- результаты научных исследований и проектно-конструкторских работ, полученные студентом на предыдущих этапах обучения (при выполнении НИРС и соответствующих курсовых проектов и практик);
- степень разработанности и освещённости в литературе решения аналогичных задач;
- возможность получения производственных данных и практических материалов процессе работы над ВКР;
- в максимально возможной степени место будущей работы выпускника;
- потребности и интересы предприятий, организаций и учреждений, на практических материалах которых будет выполнена ВКР.

4.2. Требования к содержанию, объему и структуре выпускной квалификационной работы

Выпускная квалификационная работа должна иметь следующую структуру:

- 1) пояснительная записка ВКР: титульный лист; задание; реферат; содержание; введение; основная часть (разделы и подразделы); заключение; список использованных источников; приложения;
- 2) графическая часть ВКР.

Основная часть пояснительной записки должна содержать: данные, отражающие суть, методику и основные результаты выполненной работы, обоснование выбора принятого направления работы, методы решения задач и их сравнительные оценки, анализ результатов выполненных теоретических исследований, методы исследований и расчетов. Проектная часть работы заключается в проработке прикладного аспекта осуществляемого исследования. Исследовательская (теоретическая) часть работы заключается в разработке теоретических положений определенного раздела электроэнергетики и электротехники, а также подтверждении правильности полученных результатов с помощью математического моделирования или испытаний макетного образца.

В зависимости от особенностей выполняемой работы основную часть излагают в виде сочетания текста, иллюстраций и таблиц.

Наименование разделов и их содержание, объем пояснительной записки нормируется требованиями методических

указаний и согласовываются с руководителем.

Графическая часть выпускной квалификационной работы должна содержать чертежи, схемы и другие материалы, в наибольшей степени отражающие сущность разработки и предлагаемых технических решений. При этом должна обеспечиваться взаимосвязь отдельных частей графического материала (листов) с содержательной частью пояснительной записки. Конкретный перечень листов графического материала (чертежей) определяется руководителем ВКР.

4.3. Правила оформления выпускной квалификационной работы

ВКР оформляется в виде пояснительной записки и графической части. В пояснительной записке приводятся теоретическое и расчетное обоснование принятых в работе решений. В графической части принятые решения представляются в виде чертежей, схем графиков, диаграмм. Текстовая и графическая части выполняются согласно требований действующих нормативных документов (ГОСТ 7.32-2017 Система стандартов по информации, библиотечному и издательскому делу, ЕСКД). Текст пояснительной записки структурируется в соответствии с содержанием на главы, разделы. Все заимствованные из литературы положения и фактические данные должны снабжаться ссылками на источники информации, полный перечень которых приводится в виде списка используемых источников.

Требования к оформлению пояснительной записки и графической части ВКР регламентируются методическими рекомендациями к выполнению ВКР.

4.4. Порядок выполнения выпускной квалификационной работы и подготовки текста ВКР для размещения в ЭБС

Порядок подготовки ВКР и процедура её защиты регламентируется «Порядком проведения государственной итоговой

аттестации по образовательным программам высшего образования в ФГБОУ ВО «ДонНТУ».

ВКР выполняется студентом самостоятельно в соответствии с заданием, выдаваемым ему после выхода приказа ректора "Об утверждении тем выпускных квалификационных работ". В соответствии календарным планом-графиком

разработки и выполнения ВКР прорабатывается литература и технические материалы, составляется содержание ВКР в полном объеме, выполняются разделы ВКР, проводятся консультации, обсуждаются материалы законченной ВКР с руководителем и консультантами, редактируется и оформляется ВКР как документ.

Электронная версия ВКР в формате doc (docx) и pdf представляется руководителю ВКР для ее размещения в ЭБС и проверки на наличие заимствований не позднее чем за 15 дней до намеченной даты защиты.

4.5. Особенности процедуры защиты ВКР

Процедура защиты ВКР включает: устный доклад студента с использованием графических и презентационных материалов, ответы на вопросы, оглашение отзыва и рецензии, заключительное слово, утверждение оценки за ВКР и объявление результатов ее защиты. Длительность процедуры защиты ВКР не должна превышать 30 мин. При условии успешной защиты выпускной квалификационной работы обучающемуся присваивается квалификация

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ

5.1. Примерный перечень вопросов к защите выпускной квалификационной работы

Обучающемуся в процессе защиты ВКР могут задаваться вопросы, связанные проблематикой, содержанием и основными вопросами, рассмотренными в ВКР, в том числе:

- об актуальности работы, теоретической и практической значимости ВКР;

«магистр» и выдается диплом государственного образца о высшем образовании.

- об основных подходах, идеях, технических решениях, принятых при выполнении ВКР;
- о научных и инженерных методиках, использованных при решении задач ВКР, теоретических основах выполненных

в ВКР расчетов;

- об основных результатах, полученных при выполнении ВКР;
- об областях производства, в которых возможно внедрение результатов ВКР;
- о необходимых мерах безопасности и охраны труда при внедрении в производство результатов ВКР;
- об ожидаемом экономическом (и/или социальном) эффекте от внедрения результатов ВКР.

5.2. Критерии оценивания результатов защиты выпускной квалификационной работы

Оценка выпускной квалификационной работы производится членами государственной экзаменационной комиссии (ГЭК) по результатам публичной защиты с учетом качества представленной пояснительной записки и графического материала, а также представленных рецензий.

Основными критериями при оценке выполнения и защиты ВКР являются:

- актуальность и важность выбранной темы ВКР для науки и производства;
- выполнение ВКР по заказу производства, либо по предложению вуза в соответствии с научными направлениями выпускающей кафедры;
- полнота раскрытия темы ВКР: соответствие темы ее содержанию; структурированность работы, логика построения и качество стилистического изложения; обоснованность и достоверность полученных результатов и выводов, содержащихся в ВКР, их научное и практическое значение; степень самостоятельности выполнения ВКР и уровень аргументированности суждений при изложении темы;
- объем и глубина проработки темы, эффективность предлагаемых решений, возможность их практической реализации; апробирование результатов исследования:
- выступления на конференциях, научных семинарах, наличие опубликованных научных статей по теме исследования, патентов на полезные модели (изобретения), актов, справок о внедрении результатов исследования;

- качество оформления ВКР: соответствие объема ВКР требованиям, установленным в Университете для соответствующих видов работ; соответствие оформления таблиц, графиков, формул, ссылок, рисунков, правил цитирования, библиографических ссылок и списка использованной литературы требованиям, установленным в Университете, и ГОСТов;
- уровень подготовки и степень понимания обсуждаемых вопросов при защите ВКР: представление работы (содержательность доклада и презентации; наличие раздаточных и иллюстративных материалов; умение профессионально представлять результаты работы с соблюдением правил профессиональной этики), понимание и адекватность ответов на вопросы и замечания рецензента, демонстрация при ответах углубленной фундаментальной и профессиональной подготовки.

По результатам защиты ВКР перед ГЭК выставляются следующие оценки:

- «Отлично» задание на ВКР выполнено в полном объеме; содержание и оформление ВКР соответствуют предъявляемым требованиям; рецензия и отзыв руководителя ВКР положительные, без или с несущественными замечаниями; при защите ВКР обучающийся на вопросы дает полные и точные ответы, демонстрирует отличную теоретическую подготовку;
- «Хорошо» задание на ВКР выполнено в полном объеме; содержание и оформление ВКР соответствуют предъявляемым требованиям; рецензия и отзыв руководителя ВКР положительные, но к работе имеются замечания; при защите ВКР обучающийся допускает неточности, но в целом отвечает уверенно и имеет твердые знания, демонстрирует хорошую теоретическую подготовку;
- «Удовлетворительно» задание на ВКР в целом выполнено; имеются замечания по полноте изложения и оформлению материала работе; рецензия и отзыв руководителя ВКР положительные, но к работе имеются существенные замечания; при защите ВКР обучающийся в ответах на вопросы допускает ошибки, демонстрирует слабую теоретическую подготовку;
- «Неудовлетворительно» задание на ВКР не выполнено либо имеются существенные замечания по содержанию и оформлению работы; рецензия и отзыв руководителя ВКР отрицательные, либо содержат существенные замечания к работе; при защите ВКР у обучающегося выявлены значительные пробелы в усвоении основного программного материала и неумение пользоваться теоретическими знаниями на практике, обучающийся не владеет необходимыми теоретическими знаниями, на вопросы удовлетворительных ответов не дает.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПОДГОТОВКИ И ЗАЩИТЫ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ 6.1. Рекомендуемая литература

6.1.1. O	6.1.1. Основная литература				
Л1.1	Крахмалев, О. Н. Моделирование манипуляционных систем роботов [Электронный ресурс]:учебное пособие Саратов: Ай Пи Эр Медиа, 2018 165 с. – Режим доступа: https://www.iprbookshop.ru/73333.html				
Л1.2	Медведев, В. А. Системы управления электроприводами роботов [Электронный ресурс]:учебное пособие Воронеж: Воронежский государственный технический университет, ЭБС АСВ, 2019 194 с. – Режим доступа: https://www.iprbookshop.ru/93291.html				
Л1.3	Медведев, В. А. Моделирование роботов и робототехнических систем [Электронный ресурс]:учебное пособие Москва: Ай Пи Ар Медиа, 2021 82 с. – Режим доступа: https://www.iprbookshop.ru/108369.html				
Л1.4	Медведев, В. А. Системы управления электроприводами промышленных роботов [Электронный ресурс]:учебное пособие Москва: Ай Пи Ар Медиа, 2021 193 с. — Режим доступа: https://www.iprbookshop.ru/108371.html				
Л1.5	Левин, П. Н., Бойков, А. И. Классические и современные методы построения регуляторов электропривода: принципы построения и настройки систем управления электроприводами [Электронный ресурс]:учебное пособие Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2022 81 с. — Режим доступа: https://www.iprbookshop.ru/128710.html				
Л1.6	Лаврентьев, Е. Б., Изюмов, А. И., Марченко, Э. В., Попов, С. И. Основы моделирования роботов в среде CoppeliaSim [Электронный ресурс]:учебное пособие Ростов-на-Дону: Донской государственный технический университет, 2023 42 с. — Режим доступа: https://www.iprbookshop.ru/130450.html				
6.1.2. Дополнительная литература					

- Л2.1 Каменский, С. В., Французова, Г. А., Чикильдин, Г. П., Жмудь, В. А., Востриков, А. С., Воскобойников, Ю. Е., Басыня, Е. А., Трубин, В. Г., Французовой, Г. А. Системы автоматического управления, мехатроники и робототехники [Электронный ресурс]:монография. - Новосибирск: Новосибирский государственный технический университет, 2017. - 211 с. – Режим доступа: https://www.iprbookshop.ru/91524.html
- Л2.2 Балабанов, П. В. Программирование робототехнических систем [Электронный ресурс]: учебное пособие. -Тамбов: Тамбовский государственный технический университет, ЭБС АСВ, 2018. - 81 с. – Режим доступа: https://www.iprbookshop.ru/94367.html
- Балабанов, П. В., Дивин, А. Г., Егоров, А. С. Техническое зрение робототехнических комплексов Л2.3 [Электронный ресурс]:учебное пособие. - Тамбов: Тамбовский государственный технический университет, ЭБС ACB, 2019. - 81 с. – Режим доступа: https://www.iprbookshop.ru/99814.html
- Л2.4 Афонин, В. Л., Макушкин, В. А. Интеллектуальные робототехнические системы [Электронный ресурс]:учебное пособие. - Москва: Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2020. - 221 с. – Режим доступа: https://www.iprbookshop.ru/97545.html

J 11. J 11_	15.04.00 СУГК 2024 О Системы управления рообтотехническими комплексами.ртх	cip. /			
Л2.5	Лебедев, С. К., Колганов, А. Р. Кинематика и динамика электромехатронных систем в робототехнике				
	[Электронный ресурс]:учебное пособие Москва, Вологда: Инфра-Инженерия, 2021 352 с. – Режим				
	доступа: https://www.iprbookshop.ru/115127.html				
Л2.6	Изюмов, А. И., Лаврентьев, Е. Б., Попов, С. И., Марченко, Э. В. Программное обеспечение мехатронных и				
	робототехнических систем [Электронный ресурс]:учебное пособие Ростов-на-Дону: Донской				
	государственный технический университет, 2023 64 с. – Режим доступа:				
	https://www.iprbookshop.ru/130456.html				
Л2.7	Жмудь, В. А. Методы научных исследований [Электронный ресурс]:учебное пособие Москва: Ай Пи Ар				
	Медиа, 2024 344 с. – Режим доступа: https://www.iprbookshop.ru/133157.html				
6.1.3. Методические разработки					
Л3.1	Светличный А.В., Хрипко И.Н. Методические указания по выполнению выпускной квалификационной				
	работы магистра [Электронный ресурс] [Электронный ресурс]:для студентов направления подготовки				
	13.04.02 "Электроэнергетика и электротехника" Донецк: ГОУВПО "ДОННТУ", 2020 1 файл – Режим				
	доступа: http://ed.donntu.ru/books/21/m6064.pdf				
6.3. Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного					
произв					
6.3.1	OpenOffice 2.0.3 – общественная лицензия MPL 2.0, Grub loader for ALT Linux - лицензия GNU LGPL v3,				
6.3.2	Mozilla Firefox - лицензия MPL2.0, Moodle (Modular Object-Oriented Dynamic Learning Environment) -				
6.3.3	лицензия GNU GPL				
6.4. Перечень профессиональных баз данных и информационных справочных систем					

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПОДГОТОВКИ И ЗАЩИТЫ ВЫПУСКНОЙ КВАЛИФИКАПИОННОЙ РАБОТЫ

- 7.1 Аудитория 8.303 Учебная аудитория для занятий лекционного типа, семинарского типа, помещение для самостоятельной работы обучающихся, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации : комплект проекционной аппаратуры;- компьютер для проекционной аппаратуры- доска стеклянная;- экран проекционный ELIT SCREENS M119XWS1
- 7.2 Аудитория 2.138 Читальный зал Научно-технической библиотеки помещение для самостоятельной работы с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду организации : Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду (ЭИОС ДонНТУ) и электронно-библиотечную систему (ЭБС IPR SMART), а также возможностью индивидуального неограниченного доступа обучающихся в ЭБС и ЭИОС посредством Wi-Fi с персональных мобильных устройств.
- 7.3 Аудитория 8.205 (компьютерный класс), учебная аудитория для занятий лекционного типа, семинарского типа, лабораторных работ,помещение для самостоятельной работы обучающихся, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации : компьютеры C-2,8; C/6 Celeron 2,8 GHz/MB:ASVS P5PL2 573445/RAM:2x256Mb DDR2 73547355/Video:FSVSx550HM128M044235/HDD:Samsung HD080HJ 742480/ FDD:FLPS 754716/DVD-ROM: LG GDR8164B 215566;
 - компьютер.P.DualCore.E2180 2.0PentiumDualCore E2180/2Gb/160G/Fdd/DVD-RW 3 шт.;
 - монитор 19" SamsungSM943N;
 - принтер.HP-LJ-1100

6.4.1 ЭБС IPR SMART 6.4.2 ЭБС ДОННТУ

7.4 Аудитория 8.105 - Специализированная лаборатория, помещение для выполнения лабораторных работ : 1) Лабораторный стенд для исследования электропривода лиф-та на имитационной модели с помощью программируемого логического контроллера Zelio Logic;2) Лабораторный стенд для исследования электропривода мос-тового крана на имитационной модели с помощью программи-руемого логического контроллера Zelio Logic;3) Лабораторный стенд для исследования электропривода шахтной подъемной установки на имитационной модели с по-мощью модуля удаленного ввода-вывода SLIO;4) Лабораторный стенд для исследования электромеханической инвалидной коляски InvaCare;5) Лабораторный стенд для исследования системы силового управления ручной инвалидной коляской;6) Вспомогательный робот-манипулятор для людей-меопатов Manus;7) Комплект проекционного оборудования;8) Лабораторный стенд для исследования электропривода лиф-та на имитационной модели с помощью программируемого логического контроллера Unitronics;9) Лабораторный стенд для исследования электропривода шахтной подъемной установк

- 7.5 Аудитория 8.109 Специализированная лаборатория комплектных электроприводов и автоматизированных устройств, помещение для выполнения лабораторных работ : 1) Лабораторный стенд по исследованию и управлению тепло-выми процессами с помощью программируемого логического контроллера VIPA, и регуляторов ОВЕН ТРМ 151 и ОВЕН 202;
 - 2) Лабораторный стенд для исследования комплектного элек-тропривода постоянного тока на базе тиристорного преобразо-вателя Mentor II;
 - 3) Лабораторный стенд для исследования системы управления синхронным двигателем с постоянными магнитами на базе преобразователя частоты Unidrive SP;
 - 4) Лабораторный стенд по исследованию преобразователя час-тоты Unidrive SP для управления асинхронным электроприво-дом в векторном режиме;
 - 5) Лабораторный стенд для исследования комплектного элек-тропривода с синхронным двигателем с постоянными магнита-ми и преобразователем частоты Unidrive SP;
 - 6) Лабораторный стенд по исследованию системы скалярного частотного управления асинхронным электроприводом на базе преобразователя частоты Comander SK;
 - 7) Лабораторный стенд для исследования частотно-управляемого электропривода на базе преобразователя частоты Lenze 8200;
 - 8) Лабораторный стенд с параметрированием контроллера сервопреобразователя Lenze 9300 для работы в режимах управ-ления скоростью и позиционирования;
 - 9) Лабораторный стенд для исследования электропривода ша-гового двигателя с использованием драйвера MD5-MF14;
 - 10) Лабораторный стенд для исследования плавного пуска асин-хронного двигателя с помощью устройства Soft Starter;
 - 11) Лабораторный стенд по исследованию системы управления электроприводом постоянного тока на базе комплектного элек-тропривода БТУ-3601 и ABB DCS 800.
- 7.6 Аудитория 8.113 Специализированная лаборатория, помещение для выполнения лабораторных работ : 1) Лабораторный стенд по исследованию частотно-регулируемого электропривода на базе преобразователя часто-ты Micromaster 440;2) Лабораторный стенд по исследованию алгоритмов векторно-го управления асинхронным электроприводом;3) Лабораторный стенд по исследованию системы скалярного частотного управления асинхронным электроприводом на базе преобразователя частоты Altivar 4;4) Лабораторный стенд по исследованию системы цифрового управления электроприводом постоянного тока;5) Лабораторный стенд по исследованию системы электропри-вода по схеме «Тиристорный преобразователь напряжения асинхронный двигатель»;6) Лабораторный стенд по исследованию энергосберегающих алгоритмов частотного управления асинхронным двигателем на базе преобразователя частоты ACS 550;7) Лабораторный стенд по исследованию системы электропри-вода постоянного тока при регулировании скорости во второй зоне;8) Лабораторный стенд по исследованию системы управления электроприводом постоянного тока на базе компл